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Abstract: 

Oil spillage in oil-producing communities as a result of failure due to corrosion of aging pipelines has 

become a significant environmental menace in the Niger Delta. Groundwater resources at Afiesere, an oil-

producing community, were evaluated with the view of assessing the quality of groundwater. This study 

involved in-situ and laboratory evaluation of physicochemical parameters at twenty-five (25) locations. 

Schlumberger configuration was also adopted in vertical electrical soundings at twenty (20) locations to 

delineate the sub-surface's lithological framework and protective capacity/vulnerability. Results from the 

study show pH (5.90 – 7.01), electrical conductivity (EC) (8.90 – 1247.3 µS/cm), total dissolved solids 

(TDS) (4.0 – 952.7 mg/l), K+ (0.38 – 30.05 mg/L), Na+ (0.09 – 16.34 mg/l), Ca2+ (0.29 – 65.80 mg/L), Mg2+ 

(0.02 – 6.14 mg/l), Cl- (2.40 – 65.85 mg/l), HCO3
-
 (1.07 – 77.2 mg/l), SO4

- (0.05 – 7.16 mg/l), NO3
- (0.00 – 

0.07 mg/l), and total hydrocarbon content (THC) varied between 0.00 – 1.50 mg/l. The result shows that 

groundwater is fresh and weakly acidic. Cationic, anionic, and heavy metal concentrations were mostly 

below the acceptable standard for drinking water except for Ca2+, HCO3
-
, Fe, Pb, TDS, and THC, which 

exceeded the permissible limits at 2 locations that were proximal to oil pipelines. This was adduced to 

hydrocarbon contamination due to leakages from oil pipelines. Electrical resistivity at these locations were 

characterized by low resistivity values (< 650 Ωm) which is due to degradation of hydrocarbon.  
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Introduction  

The advent of crude oil production in the Niger Delta 

region has negatively impacted the environment; soils and 

groundwater have become contaminated with hydrocarbons 

from various routes: spills from corroded/vandalized 

pipelines and oil production operations. Unprecedented oil 

spillage, a persistent environmental problem for the past 5 

decades, has made the region one of the most polluted in 

the world. The presence of petroleum hydrocarbons in soils 

is a problem that has caused concerns worldwide because it 

poses a considerable threat to human health and natural 

ecosystems (Hewelke et al., 2018). Once deposited on the 

surface, the hydrocarbon may persist, bioaccumulate 

(Alloway, 1992), and infiltrate into aquifers via leaching 

and surface runoff.  

The Niger Delta, which covers about 20,000 km2, is the 

largest wetland and the third-largest drainage 

basin in Africa. The region is Nigeria's crude oil and 

natural gas hub, with several networks of product pipelines 

dotting the entire landscape. These petroleum products 

remain one of the most prevalent contaminants (Atekwana 

et al., 2004a). The pipelines, which have an estimated life 

span of about fifteen years, are old and susceptible to 

corrosion because most of the pipelines are as old as twenty 

to twenty-five years. The activities of oil and gas industries 

pose a significant source of soil and water pollution 

(Hentati et al., 2013; Karr, 2013; Ohanmu and Bako, 2017). 

Corrosion which accounts for a high percentage of all 

spills, is due to the small size of the oilfields in the Niger 

Delta, which necessitated an extensive network of pipelines 

between oil fields and flow stations. These pipelines are 

old, susceptible to corrosion, and have narrow diameters, 

thus allowing many opportunities for leakage. 

High concentrations of hydrocarbon has been reported 

groundwater in the Niger Delta by various studies (Karr, 

2013; Akporido and Kadiri, 2014; Onojake et al., 2014; 

Imaobong and Prince, 2016; Onyegeme-Okerenta et al., 

2017). It is the concern of crude oil seeping into the 

groundwater that necessitated the current investigation with 

the objective aimed at assessing the vulnerability of the 

aquifer to the activities of petroleum companies in the 

region. This is eminent to the availability of potable water 

resources both for present and future generation given the 

fact that aquifers in the Niger Delta region are generally 

shallow. 

Location and Geology 

The study area, which lies within the Niger Delta, is 

situated approximately within longitudes 6° 00ʹ E, 6° 02ʹ E 

and latitudes 5° 30ʹ N, 5° 32ʹ N. The Warri-Sombreiro 

Upper Deltaic Plain deposits underlie the region. The 

stratigraphic sequence comprises of thin clay/sandy clay 

topsoil, underlain by fine to medium and coarse-grained 

sand (Aweto, 2018). The low-lying area does not usually 

exceed an elevation of 20 m and consists of an extensive 

plain exposed to periodical flooding when the rivers and 

creeks overflow their bank. 

Supported by
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Fig. 1: Map of study area showing sounding and 

groundwater sampling locations 

 

Methodology 

Resistivity data 

Geophysical electrical soundings with four electrodes 

Schlumberger configuration, were carried out at twenty 

(20) locations with current electrode spacing varying 

between 1 and 200 m. The ABEM SAS 1000 Terrameter 

was used to acquire the resistivity data. The processing, 

interpretation techniques, and application of resistivity data 

in protective capacity/vulnerability evaluation following 

the procedures of Orellana and Mooney (1996); Vander 

Valpen (2004); Oladapo et al. (2004); Aweto and Mamah 

(2014); Aweto (2019) were used in this study. 

The vulnerability of the study area was evaluated based on 

longitudinal conductance using equation 1. 

S = ∑
ℎ𝑖

𝜌𝑖

𝑛
𝑖  ……………………………. (1) 

 

Groundwater sampling and analysis 

Twenty-five (25) water samples were collected: thirteen 

(13) from boreholes and twelve (12) from hand-dug wells 

into sterile bottles that were tightly covered to minimize 

oxygen contamination and the escape of dissolved gases. 

The pH, electrical conductivity (EC), and total dissolved 

solids (TDS) were determined in-situ using Schott Gerate 

pH meter and HACH conductivity/TDS meter. Laboratory 

analysis was conducted to for THC, K, Na, Ca, Mg, Cl, 

HCO3, SO4, NO3, Fe, Pb, Zn, Cu and Cr following standard 

methods as specified by APHA (2011). 

 

Results and Discussion 

Isoresistivity and Vulnerability maps of Afiesere 

The sounding data obtained from the resistivity 

investigations are presented as sounding curves (fig. 2). 

The geoelectric parameters and vulnerability of the study 

are shown in Table 1. Isoresistivity at depths of 5 m, 10 m, 

20 m and vulnerability maps was generated using SURFER 

(2002). 

 
                                 (a)                             (b) 

            

Fig. 2: Computer generated model data curves for 

Afiesere VES 6 and 16. 

 

Table 1: Summary of geoelectric parameters and 

protective capacity/vulnerability rating 

VES 

Location 

Resistivity 

(Ωm) 

Thickness 

(m) 

S = 

∑
ℎ𝑖

𝜌𝑖

𝑛
𝑖  

 

Protective 

capacity/ 

vulnerability 

Rating 

1 268/855/637/109 1.1/6.3/18.7 0.012 Poor Protective 

Capacity 

5 118/22/428/925 0.5/16.5/10.4 0.754 Good Protective 

Capacity 

10 1152/605/450/975 1.5/1.9/21.8 0.004 Poor Protective 

Capacity 

15 508/872/647/228 1.9/5.4/12.6 0.02 Poor Protective 

Capacity 

20 816/356/405/1175 1.8/9.5/11.4 0.03 Poor Protective 

Capacity 

 

The Isoresistivity maps generated for Afiesere at 5 m, 10 

m, and 20 m are shown in fig. 3a - 3c. At 5 m, about 65% 

of the area is underlain by laterite, 20% is underlain by 

sand while the remaining 12% of the area is underlain by 

clayey regolith. At depths of 10 m, 80% of the subsurface 

is sand; the aquifer is located within this depth where it is 

mostly unconfined. At depths of 20 m, the lithology is 

wholly sand and constitutes part of the aquifer in the area. 

The vulnerability map of Afiesere (fig. 3d) shows that 

about 70% of the area has poor protective capacity. This is 

consistent with the isoresistivity map that shows that the 

vadose at 5 m is made up of sand in about 85% of the 

community. A concentric pattern of vulnerability ranging 

from weak to good protective capacity was observed in the 

northeastern and southwestern parts. This vulnerability 

pattern is consistent with the lithology of clay/sandy clay 

that underlie these regions. The aquifer is shallow and not 

adequately protected except the northeastern and 

southwestern parts where the aquifer is given moderate to 

good protection by clayey horizon. Thus, the aquifer is 

vulnerable to contamination in the event of oil spill. 

According to Aweto and Mamah, 2014; Ohwoghere-

Asuma et al., 2019, aquifers are given protection and are 

less vulnerable when the vadose zone is comprised 

primarily of clayey regolith, which retard infiltration of 

contaminants. 
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(a) 5 m 

 
(b) 10 m 

 
(c) 20 m 

 
(d) 

Fig. 3: Isoresistivity map at depths of (a) 5 m, (b) 10 m, 

(c) 20 m. (d) vulnerability map 

 

Hydrogeochemistry of Groundwater 

The results of the physical and chemical characteristics of 

groundwater samples in the study area are presented in 

Table 2. The pH values ranged between 5.90 – 7.01, 

electrical conductivity (EC) ranged from 8.90 – 1247.3 

µS/cm, and total dissolved solids ranged from 4.0 – 952.7 

mg/l. The range concentration of major cautions: K+, Na+, 

Ca2+, and Mg2+ are: 0.38 – 30.05 mg/l, 0.09 – 16. 34 mg/l, 

0.29 – 65.80 mg/l and 0.02 - 6.14 mg/l. the range 

concentration of major anions: Cl-, HCO3
-, SO4

- and NO3
-
 

are 2.40 – 65.82 mg/l, 1.07 – 77.2 mg/l, 0.05 – 7.16 mg/l 

and 0.00 – 0.07 mg/l. heavy metals concentration range of 

Fe, Pb, Zn, Cu, and Cr are 0.01 – 0.52 mg/l, 0.00 - 0.05 

mg/l, 0.00 – 0.12 mg/l, 0.00 – 0.08 mg/l and 0.00 – 0.01 

mg/l while total hydrocarbon content (THC) ranged 

between 0.00 – 1.50 mg/l.  

 

Table 2: Summary of physicochemical parameters in 

groundwater 

Parameters Min. Max. Mean Std. WHO 

pH 5.90 7.01 6.45 0.29 6.5 – 

8.5 

TDS (mg/l) 4.0 952.7 36.16 37.92 500 

EC (µS/cm) 8.9 1247.3 73.97 72.86 1000 

THC (mg/l) 0.00 1.50 0.06 0.29 1.0 

K (mg/l) 0.38 30.05 7.62 6.86 - 

Na (mg/l) 0.09 16.34 5.15 4.64 - 

Ca (mg/l) 0.29 65.80 5.80 6.38 75 

Mg (mg/l) 0.02 6.14 1.01 1.36 50 

Cl (mg/l) 2.40 65.92 17.49 16.51 200 

HCO3 

(mg/l) 

1.07 77.2 8.82 7.26 - 

SO4 (mg/l) 0.05 7.16 1.38 1.62 200 

NO3 (mg/l) 0.00 0.07 0.017 0.026 50 

Fe (mg/l) 0.01 0.52 0.13 0.12 0.3 

Pb (mg/l) 0.00 0.05 0.01 0.015 0.01 

Zn (mg/l) 0.00 0.12 0.02 0.03 5.0 

Cu (mg/l) 0.00 0.08 0.006 0.017 1.0 

Cr (mg/l) 0.00 0.01 0.004 0.002 - 

The physical description of groundwater is clear and fresh. 

The pH values of groundwater samples were low and 

indicated that the water is mostly weakly acidic; the low pH 

may be due to gas flaring from the flow station in the study 

area. Olobaniyi and Efe (2007); Akpoborie and Aweto 

(2015); Ohwoghere-Asuma et al. (2020), have documented 

similar observations of low pH in the Niger Delta. 

Electrical conductivity is an indicator of the presence of 

ions and concentration of dissolved solids. The results of 

EC, TDS, major cations, and anions in groundwater 

samples were below the permissible limits set by WHO 

(2011) except at 2 locations (9 and 15). The concentrations 

of total hydrocarbon content at these locations, which lie 

proximal to oil pipelines, were above the WHO 

recommended limits of 1.0 mg/l. These locations also show 

remarkably high EC and TDS, thus an indication of 

possible hydrocarbon contamination.  

Myriads of investigations by Sauck (2000); Atekwana et al. 

(2000), Werkema et al. (2003); Atekwana et al. (2004b) 

have reported TDS up to 810 mg/l for groundwater 

contaminated by hydrocarbon. This assertion is consistent 

with the findings of this study at these contaminated sites, 

which reported TDS of 834.2 and 952.7 mg/l, respectively. 

Ca and HCO3 ions at these locations were also relatively 

high; concentrations of Ca were 50.6 and 65.8 mg/l, while 

those of HCO3 was 38.4 and 77.2 mg/l. These values were 

http://www.ftstjournal.com/


Integrated Geophysical and Geochemical Methods for Assessment of Hydrocarbon Contamination of the Warri-Sombreiro Upper Deltaic Plain Deposits Aquifer 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; April, 2023: Vol. 8 No. 1 pp. 128 – 132 131 

significantly higher than those reported by Akpoborie and 

Aweto (2012); Ohwoghere-Asuma et al. (2014); Ofomola, 

(2018). Legal (2002) showed that Ca and HCO3 in 

groundwater may have accounted for the increase in TDS. 

A study by McMahon et al. (1995) also reported a similar 

trend of higher concentrations of dissolved ions in aquifers 

contaminated with hydrocarbon. Geochemical analysis 

revealed the presence of Pb at the hydrocarbon-impacted 

sites with concentrations above 0.01 mg/l. According to 

Onojake et al. (2014); Wilberforce (2016), hydrocarbon-

impacted areas are characterized by increased levels of 

heavy metals such as Cd, Cr, and Pb. The resistivity values 

of the second layer (fig. 2a) close to a pipeline (VES 6) 

which coincided with normal depth of burial of pipelines 

(1.5 – 2.5 m), were significantly low (< 650 Ωm). 

Resistivity investigations at hydrocarbon-impacted sites 

have documented high resistivities due to the replacement 

of conductive pore water by highly resistive hydrocarbon 

(Schneider and Greenhouse; De Ryck, 1993). This is true 

as long as the hydrocarbon is fresh; signatures at aged 

hydrocarbon sites indicate lower resistivity due to 

biodegradation (Sauck, 2000; Shevnin, 2003). 

The spike in THC was observed only in the vicinity of oil 

pipelines, thus indicating that hydrocarbon contamination is 

localized, the source of hydrocarbon is leakages from 

pipelines due to corrosion. According to Atakpo and 

Ayolabi (2008); Ukobah et al. (2011), groundwater 

contamination by hydrocarbon can result from leakages in 

corroded pipelines. The isoresistivity and vulnerability map 

show that the area impacted by hydrocarbon is underlain by 

porous, permeable sand and has a poor protective capacity, 

as a result, prone to contamination by hydrocarbon in the 

event of spills. Corrosion usually leads to a reduction in the 

thickness of pipelines and, in some cases, breaches and 

finally results in leakages reported as spillages. Studies 

carried out by Afa and Ngobia (2013); Ngah and Abam, 

(2014), reported that soil resistivity in some parts of the 

Niger Delta was found to be slightly and strongly corrosive 

with few localized non-aggressive soils. Their findings 

indicated a spatial variation in soil corrosivity that increases 

across geomorphic zones of the Niger Delta in an N-S 

trend. Corrosivity increases from the coastal plain in the 

North to the mangrove and estuary in the South. Okiongbo 

et al. (2019) observed that corrosivity in the coastal plain, 

generally drier and at a higher elevation, is less corrosive 

compared to the mangrove swamps and estuarine 

environments, which are wet and at lower elevations. The 

fact that the study area lies in a less corrosive sub-

environment explains why spillage due to corrosion is not 

widespread. 

 

Conclusion 

This study describes the distribution pattern of groundwater 

chemistry and the overburden protective capacity around 

Afiesere, an oil-producing community in the Niger Delta. 

Results from the study show that most parameters are 

within the maximum contamination limits except at 2 

locations that lie in the vicinity of oil pipelines. TDS, EC, 

Ca2+, HCO3
- and THC at the 2 locations were above the 

maximum permissible limits for potable water, indicating 

hydrocarbon contamination. Resistivity values at the 

hydrocarbon-impacted zones were significantly low (< 650 

Ωm). This is contrary to the general assumption that 

hydrocarbon-impacted zones are characterized by high 

resistivity; this is true only if the hydrocarbon is fresh or 

has not been altered. The impacted zone in this study is 

aged, and the hydrocarbons have undergone degradation 

leading to an increase in TDS due to enhanced weathering 

of minerals from acids which are byproducts of the 

degradation process. The possible source of hydrocarbon is 

from leakage of aging pipelines. The poor protective 

capacity of the vadose zone around the vicinity of the 

pipelines further accentuated the spread; as hydrocarbon 

migrated through the interconnected pore spaces within the 

sand underlying the area. Monitoring of pipelines for 

corrosion should be done frequently and in the eventuality 

of spillage, remediation measures should be put in place 

immediately to prevent the contamination of the aquifer 

which is highly vulnerable. 
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